ahmadullins@gmail.com
ahmadullins@ahmadullins.ru
Опытное производство
+7 (919) 643-30-07
Восстания 100, Химград
Научный центр
+7 (919) 643-30-07
Сибирский Тракт 34, корпус 10

Патент № 2529500 Катализатор для окисления сернистых соединений

КАТАЛИЗАТОР ДЛЯ ОКИСЛЕНИЯ СЕРНИСТЫХ СОЕДИНЕНИЙ

Патент Российской Федерации

Суть изобретения:

Изобретение относится к производству гетерогенных катализаторов для жидкофазного окисления сернистых соединений и может быть использовано в газовой, нефтедобывающей, нефтеперерабатывающей, нефтехимической, целлюлозно-бумажной и других отраслях про-мышленности. Катализатор представляет собой полимерную композицию фталоцианина ко-бальта и/или его водонерастворимого производного с оксидами металлов переменной валент-ности на полипропилене или полиэтилене низкого давления (ПЭНД)- в качестве носителя при следующем соотношении компонентов, мас.%: фталоцианин кобальта и/или его водонераство-римое производное 0,05 – 20,0; оксид марганца (IV) и/или оксид меди (II) и/или оксид никеля (II) и/или оксид кобальта (III) по 0,05-20,0%; ПЭНД и/или полипропилен — остальное. При этом в качестве водонерастворимого производного фталоцианина кобальта катализатор содержит дихлорфталоцианин кобальта. Катализатор указанного состава обладает более высокой каталитической активностью в реакциях окисления сульфидной и меркаптидной серы в щелочном растворе, особенно в присутствии примесей органических аминов, обладающих ингибирующим воздействием на фталоцианиновые катализаторы.
3 табл.

Номер патента:
Класс(ы) патента: B01J31/18, B01J23/75, B01J21/06
Номер заявки:
Дата подачи заявки:
Дата публикации:
Заявитель(и): Ахмадуллин Р.М., Ахмадуллина А.Г.;
Автор(ы): Ахмадуллина А.Г.; Ахмадуллин Р.М.; Агаджанян С.И.;
Патентообладатель(и): Ахмадуллин Ренат Маратович, Ахмадуллина Альфия Гариповна

Описание изобретения:

Настоящее изобретение относится к производству гетерогенных катализаторов для жидко-фазного окисления сернистых соединений и может быть использовано в газовой, нефтедобы-вающей, нефтеперерабатывающей, нефтехимической, кожевенной, целлюлозно-бумажной, ал-мазодобывающей и в других отраслях промышленности.
Известен гетерогенный катализатор демеркаптанизации нефтяных дистиллятов, содержа-щий 0,01-10,0%мас. водорастворимой неорганической соли меди, железа, никеля или кобальта на углеродном волокнистом материале [1], и катализатор, содержащий 10-20% сульфата меди на углеродной волокнистой ткани [2].
Недостатком этих катализаторов является недостаточная прочность адсорбционной связи между каталитически активной солью, щелочью и углеродным носителем, приводящая к по-степенному уносу водорастворимой соли и щелочного агента с поверхности углеродного носителя, снижению активности катализатора и необходимости его периодической подпитки солями металлов переменной валентности и щелочным агентом.
Известен гетерогенный катализатор для окисления сернистых соединений, содержащий в качестве каталитически активного компонента пиритный огарок (33-37% масс.), введенный в глиняную массу [3], а также катализатор, содержащий в качестве активного компонента ком-позицию пиритного огарка (10 – 15 мас.) с оксидом хрома (VI) 3 — 5; оксидом меди 5 — 10; окси-дом ванадия (V) 3 — 5; нефтяным коксом 7 — 10; оксидом цинка 5 — 10 на глиняном носителе [4].
Общим недостатком этих катализаторов является их недолговечность из-за использования в качестве носителя глины, подверженной щелочному гидролизу в процессе сероочистки газов и жидких нефтепродуктов, протекающих в щелочных средах.
Известны также катализаторы окисления сернистых соединений на полиэтилене высокого давления (ПВД), содержащие в качестве основного каталитически активного компонента пи-ритный огарок в сочетании с различными оксидами металлов переменной валентности: с оксидом сурьмы (III) [5], с оксидами сурьмы (III) и марганца [6], с оксидами меди (II) и марганца (IV) [7], с оксидами сурьмы (III), марганца (IV) и хрома (VI) [8], или использующие в качестве активного компонента оксид марганца (IV) 35 — 37; оксид хрома (VI) 2 — 3 [9].
Общим недостатком указанных катализаторов является их недостаточно высокая термиче-ская и химическая стойкость из-за использования в качестве носителя ПВД, имеющего относи-тельно низкую температуру плавления (100?110оС) и нестойкого к воздействию непредельных и ароматических углеводородов при нагревании до 80оС. Это препятствует широкому и безо-пасному использованию данных катализаторов в промышленных условиях для обезвреживания сульфидных стоков [10].
Известен также гетерогенный катализатор окисления сернистых соединений, содержащий в качестве активного компонента оксиды и/или гидроксиды, и/или шпинели металлов переменнной валентности на полимерном носителе – полиэтилене, полипропилене, полистироле или др. полимере, отличающийся дополнительным содержанием в нем модифицирующей добавки – органического основания, и/или гетерополикислоты, и/или углеродсодержащего материала при следующем содержании компонентов: активный компонент (15-50%), модифицирующая добавка (0.5-20%), носитель – остальное [11].
Общим недостатком указанных катализаторов является неэффективная форма их испол-нения – в виде шарообразных гранул размером 10-12 мм, значительно снижающая геометриче-скую поверхность и свободный объем катализатора, т.е. долю реакционного раствора в едини-це объема реактора, обуславливая увеличение объема очистных сооружений и размера капи-тальных и эксплуатационных затрат на проведение очистки.
Наиболее близким к изобретению по технической сущности и достигаемому результату является используемый в промышленности катализатор окисления сернистых соединений на носителе из полипропилена (ПП) или полиэтилена низкого давления (ПНД), содержащий 0,05 ? 20,0 мас.% фталоцианина кобальта и/или его водонерастворимого производного, выбранного из группы, включающей тетрахлорфталоцианин, тетрахлорметилфталоцианин и тетратретбутилфталоцианин кобальта и 0,05 ?20,0 мас.% двуокиси титана [12].
Указанный катализатор в виде блочной насадки с развитой геометрической поверхностью используется для регенерации меркаптидсодержащих щелочных растворов на установках де-меркаптанизации сжиженных газов и для обезвреживания сульфидсодержащих стоков на неф-теперерабатывающих предприятиях России, Литвы и Украины [13].
Его недостатком является чувствительность к ингибирующему воздействию органических аминов, попадающих в щелочной раствор при демеркаптанизации сжиженных газов, предварительно прошедших аминовую очистку от сероводорода. По мере накопления органических аминов в циркулирующем щелочном растворе происходит постепенное сни-жение активности катализатора в процессе окислительной регенерации щелочи, что сужает область эффективного применения данного катализатора [14].
Цель изобретения — повышение активности катализатора при окислении сульфидов и мер-каптидов в щелочном растворе, менее чувствительного к ингибирующему воздействию примесей органических аминов, присутствующих в сжиженных углеводородных газах или рефлюксах, прошедших аминовую очистку от сероводорода перед щелочной демеркаптанизацией.
Согласно изобретению поставленная цель достигается тем, что предлагаемый катализатор окисления сернистых соединений на полимерном носителе из полипропилена (ПП) или поли-этилена низкого давления (ПЭНД), содержащий фталоцианин кобальта и/или его водонерас-творимое производное и оксид металла переменной валентности, отличается тем, что в каче-стве водонерастворимого производного фталоцианина кобальта используют не заявленный ранее дихлорфталоцианин кобальта, а в качестве оксида металла переменной валентности — оксид марганца (IV) и/или оксид меди (II) и/или оксид никеля (II) и/или оксид кобальта (III) при следующем содержании компонентов, мас.%:
Фталоцианин кобальта и/или дихлорфталоцианин кобальта — 0,05 – 20,0;
Оксид марганца (IV) — 0,05 – 20,0; оксид меди (II) — 0,05 – 20,0; оксид кобальта — 0,05 – 20,0, оксид никеля (II) — 0,05 – 20,0, ПП или ПЭНД — остальное.
В зависимости от конкретных условий применения катализатора — природы и концен-трации окисляемых сернистых соединений, используют полимерные композиции фталоцианина кобальта и/или дихлорфталоцианина кобальта с различными оксидами металлов переменной валентности. Например, для окисления меркаптидов в щелочном растворе, содержащем органические амины, вместо фталоцианина кобальта предпочтительнее использовать дихлорфталоцианин кобальта в композиции с оксидом меди на носителе из ПЭНД или ПП. При обезвреживании концентрированных сульфидсодержащих сернисто-щелочных стоков (СЩС) целесообразнее использовать фталоцианин кобальта в композиции с оксидом марганца и оксидом меди на ПП или ПЭНД.
Отличительным признаком предлагаемого катализатора от прототипа является его состав, а именно: использование в качестве каталитически активного компонента катализатора наряду с фталоцианином кобальта дихлорфталоцианина кобальта в комплексе с оксидом меди (II) и/или оксидом марганца (IV) и/или оксидом никеля (II) и/или оксидом кобальта (III), вводимым в ПП или ПЭНД в количестве 0,05 – 20,0%мас.
Указанный отличительный признак предлагаемого катализатора определяет его новизну и изобретательский уровень в сравнении с известными катализаторами, так как использование фталоцианина кобальта и/или дихлорфталоцианина кобальта в композиции с перечисленными оксидами металлов переменной валентности — оксидом меди (II) и/или оксидом марганца (IV) и/или оксидом никеля (II) и/или оксидом кобальта (III) на носителе из ПП или ПЭНД в литературе не описано и позволяет получить катализатор окисления сернистых соединений с более высокой каталитической активностью, менее чувствительного к присутствию органических аминов в водно-щелочном растворе.
Предлагаемое содержание оксида меди (II) и/или оксида марганца (IV) и/или оксида никеля (II) и/или оксида кобальта (III) в смеси с фталоцианином кобальта и/или с дихлорфталоцианином кобальта в составе катализатора в количестве по 0,05 – 20,0%мас. является оптимальным, т.к. при их содержании ниже 0,05 мас.% не достигается существенного повышения каталитической активности и стабильности катализатора, а увеличение их со-держания выше 20,0 мас.% не приводит к дальнейшему существенному повышению каталитической активности, т.е. экономически нецелесообразно.
Предлагаемый катализатор получен и испытан в лабораторных условиях. Ниже приведены примеры и результаты проведенных экспериментов.

Пример 1.
Для приготовления испытуемого образца катализатора рассчитанные количества порошко-образных оксида меди (II) (CuO) и/или оксида марганца (IV) (MnO2) и/или оксида никеля (II), и/или оксида кобальта (III) и фталоцианина кобальта (ФЦСо) и/или его водонерастворимого производного — дихлорфталоцианина кобальта (ДХФЦСо), полипропилена (ПП) или полиэти-лена низкого давления (ПЭНД) смешивают на обогреваемых лабораторных вальцах при температуре размягчения полимерного носителя (ПП — при 160 — 180oC, ПЭНД — при 140 — 160oC) до получения однородной катализаторной массы, из которой затем на прессе изготавливают пластину толщиной 1 — 2 мм. Полученную пластину нарезают на частицы размером 2-3мм.
Поскольку от природы полимерного носителя зависят только физико — механические свой-ства катализатора (термо- и хемостойкость, а также механическая прочность), а его активность определяется лишь составом и концентрацией каталитически активных компонентов, то для испытания влияния состава активных компонентов на эффективность катализатора в реакциях окисления сульфидной и меркаптидной серы могут быть использованы катализаторы на любом из полимерных носителей. В качестве такого носителя для испытаний был выбран ПЭНД, легче перерабатываемый в лабораторных условиях.

Пример 2.
Определенный объем раствора сульфида натрия помещают в обогреваемый стеклянный ре-актор периодического действия объемом 75 мл и нагревают до заданной температуры. Затем сюда же помещают определенную навеску нарезанных частиц катализатора и интенсивно пе-ремешивают смесь на магнитной мешалке в атмосфере воздуха. Об активности катализаторов судят по изменению остаточного содержания окисляемого сернистого соединения во времени потенциометрическим титрованием по ГОСТ 22985-90. Условия проведения испытаний ката-лизаторов: масса катализатора 5 г, объем раствора сульфида натрия — 50 мл, температура опы-тов — 55oC, время окисления — 30 мин, исходная концентрация сульфидной серы 0,76 % мас.
Составы приготовленных по примеру 1 катализаторов и результаты испытаний их катали-тической активности в реакциях окисления сульфидной серы приведены в табл. 1. Здесь же для сравнения приведены данные по степени окисления сульфидной серы в присутствии известных катализаторов по прототипу.
Из приведенных в табл. 1 данных видно, что предлагаемый катализатор в широком диапа-зоне соотношения концентраций оксида меди и/или оксида марганца и/или оксида никеля и/или оксида кобальта с фталоцианином кобальта и/или его водонерастворимым производным ДХФЦСо является более активным в реакции окисления сульфидной серы по сравнению с из-вестными катализаторами. Установлено, что предпочтительным является соотношение оксида меди, оксида марганца и фталоцианина кобальта, равное 1 : 1 : 2, при котором наблюдается наибольшая каталитическая активность (табл.1, оп.7). Поэтому оценку активности катализато-ра, содержащего оксид меди, оксид марганца и водонерастворимого производного фталоциа-нина кобальта — ДХФЦСо, проводят при данном соотношении этих компонентов (табл.1, оп. 8).

Пример 3.
Испытания каталитической активности предлагаемых катализаторов по отношению к мер-каптидной сере проводят аналогично примеру 2 с использованием катализатора на ПЭНД с соотношением оксида меди (II) и/или оксида марганца (IV) и/или оксида никеля (II) и/или оксида кобальта (III) к фталоцианину кобальта и/или его водонерастворимому производному ДХФЦСо, равным 1:1. Условия проведения испытаний катализаторов: масса катализатора — 5 г, объем 10%-ого раствора гидроксида натрия с этилмеркаптидом натрия — 50 мл, температура опытов 40oC, время окисления — 30 мин, исходная концентрация меркаптидной серы — 0,273 мас.%. Об активности катализаторов судят по изменению остаточного содержания меркаптид-ной серы во времени потенциометрическим титрованием по ГОСТ 22985-90.
Составы приготовленных по примеру 1 катализаторов и результаты их испытаний на ката-литическую активность в реакциях окисления меркаптидной серы приведены в табл.2. Здесь же для сравнения приведены данные по степени окисления меркаптидной серы в присутствии известного катализатора по прототипу.
Из приведенных в табл. 2 данных видно, что предлагаемый катализатор является более ак-тивным при окислении меркаптидной серы по сравнению с известным катализатором.
Пример 4
Испытания каталитической активности предлагаемых катализаторов при окислении мер-каптидной серы в присутствии органического амина проводят аналогично примеру 3 с использованием катализатора на ПЭНД с оптимальным соотношением оксида меди (II) и/или оксида марганца (IV) и/или оксида никеля (II) и/или оксида кобальта (III) к фталоцианину кобальта и/или его водонерастворимому производному — ДХФЦСо, равным 1:1, в присутствии моноэтаноламина (МЭА).
Условия проведения испытаний катализаторов: масса катализатора — 5 г, объем 10%-ого раствора гидроксида натрия с этилмеркаптидом натрия — 50 мл, температура опытов — 40oC, время окисления — 30 мин, исходная концентрация меркаптидной серы — 0,273 мас.%, концен-трация МЭА в щелочном растворе меркаптида натрия – 0,5%мас. Об активности катализаторов судят по изменению остаточного содержания меркаптидной серы во времени потенциометрическим титрованием по ГОСТ 22985-90.
Составы приготовленных по примеру 1 катализаторов и результаты их испытаний на ката-литическую активность в реакциях окисления меркаптидной серы в присутствии МЭА приве-дены в табл.3. Здесь же для сравнения приведены данные по степени окисления меркаптидной серы в присутствии МЭА на известных катализаторах (по прототипу).
Из приведенных в табл. 3 данных видно, что предлагаемые составы катализатора на ПЭНД с оптимальным соотношением оксидов металлов к фталоцианину кобальта и/или его водоне-растворимому производному ДХФЦСо, равным 1 : 1, является более активным в реакции окисления меркаптидной серы в присутствии МЭА по сравнению с известными катализа-торами.

Литература

1. Пат. 2076892 Российская Федерация, МКП7 C10G27/04. Способ демеркаптанизации нефтяных дистиллятов / Вильданов А.Ф.; Мазгаров А.М.; Бажирова Н.Г.; Луговской А.И.; Борисенкова С.А., заявитель и патентообладатель Всероссийский научно-исследовательский институт углеводородного сырья. – № 94039238/04. заявл. 18.10.1994, опубл. 10.04.1997.
2. Пат. 2106387 Российская Федерация, МКП7 C 10 G 27/04. Способ демеркаптанизации нефтяных дистиллятов / Мазгаров А.М.; Вильданов А.Ф.; Бажирова Н.Г.; Коробков Ф.А.; Крылов В.А.; Аликин А.Г.; Камлык А.С.; Безворотный П.В.; Веселкин В.А., зая-витель и патентообладатель Акционерное общество открытого типа «ЛУКойл- Перм-нефтеоргсинтез»; Всероссийский научно-исследовательский институт углеводородного сырья. — № 96108772/04. заявл. 06.05.1996, опубл. 10.03.1998.
3. Пат. 2089287 Российская Федерация, МКП7 B01J23/78, B01J23/86, B01D53/78, B01J23/86, B01J101:64. Катализатор окисления сернистых соединений / Кочеткова Р.П.; Кочетков А.Ю.; Панфилова И.В.; Коваленко Н.А.; Боровский В.М.; Куимов С.В.; Баби-ков А.Ф.; Яскин В.П.; Ан Е.Д.; Глазырин В.В.; Зайкова Р.М.; Семилетко С.В.; Шапкин С.В.; Тихонов Г.П., заявитель и патентообладатель Частное индивидуальное научно-производственное предприятие «Катализ». – № 95113808/04. заявл. 01.08.1995, опубл. 10.09.1997.
4. Пат. 2059428 Российская Федерация, МКП7 B01J23/86, B01J103:40, B01J103:20. Катали-затор окисления сернистых соединений / Кочеткова Р.П.; Кочетков А.Ю.; Коваленко Н.А.; Боровский В.М.; Куимов С.В.; Глазырин В.В.; Зайкова Р.М.; Бабиков А.Ф.; Яскин В.П., заявитель и патентообладатель Частное индивидуальное научно-производственное предприятие «Катализ». – № 93029900/04. заявл. 17.06.1993, опубл. 10.05.1996.
5. Пат. 2089288 Российская Федерация, МКП7 B01J23/843, B01D53/50, B01J23/843, B01J105:94. Катализатор окисления сернистых соединений / Кочеткова Р.П.; Кочетков А.Ю.; Панфилова И.В.; Коваленко Н.А.; Боровский В.М.; Куимов С.В.; Бабиков А.Ф.; Яскин В.П.; Ан Е.Д.; Глазырин В.В.; Зайкова Р.М.; Семилетко С.В.; Шапкин С.В.; Ти-хонов Г.П., заявитель и патентообладатель Частное индивидуальное научно-производственное предприятие «Катализ». – № 95112979/04. заявл. 25.07.1995, опубл. 10.09.1997.
6. Пат. 2053015 Российская Федерация, МКП7 B01J23/16, B01J23/34, B01J23/64, B01J23/74, B01J23/16, B01J105:94. Катализатор окисления сульфидной серы белого щелока / Ко-четкова Р.П.; Кочетков А.Ю.; Глазырин В.В.; Евтушенко Э.Г.; Богдан В.М.; Панфилова И.В.; Шиверская И.П., заявитель и патентообладатель Частное индивидуальное научно-производственное предприятие «Катализ». – № 5068351/04. заявл. 07.08.1992, опубл. 27.01.1996.
7. Пат. 2053016 Российская Федерация, МКП7 B01J23/34, B01J23/34, B01J23/70, B01J23/72, B01J103:12. Катализатор для окисления сернистых соединений / Кочеткова Р.П.; Кочет-ков А.Ю.; Глазырин В.В.; Богдан В.М.; Евтушенко Э.Г.; Панфилова И.В.; Коваленко Н.А.; Шиверская И.П., заявитель и патентообладатель Частное индивидуальное научно-производственное предприятие «Катализ». – № 5068352/04. заявл. 07.08.1992, опубл. 27.01.1996.
8. Пат. 2058188 Российская Федерация, МКП7 B01J23/16, B01J23/34, B01J23/74. Катализа-тор окисления сульфидной серы белого щелока / Кочеткова Р.П.; Кочетков А.Ю.; Бо-ровский В.М.; Куимов С.В.; Глазырин В.В.; Зайкова Р.М.; Семилетко С.В.; Панфилова И.В.; Ан Е.Д.; Коваленко Н.А., заявитель и патентообладатель Частное индивидуальное научно-производственное предприятие «Катализ». – № 93032014/04. заявл. 17.06.1993, опубл. 20.04.1996.
9. Пат. 2053840 Российская Федерация, МКП7 B01J23/26, B01J23/34, B01J23/26, B01J103:54, B01J105:94. Катализатор для окисления сернистых соединений в процессе биологической очистки сточных вод / Кочеткова Р.П.; Кочетков А.Ю.; Коваленко Н.А.; Боровский В.М.; Куимов С.В.; Глазырин В.В.; Зайкова Р.М.; Семилетко С.В.; Бабиков А.Ф.; Яскин В.П.; Ан Е.Д., заявитель и патентообладатель Частное индивидуальное на-учно-производственное предприятие «Катализ». – № 93032019/04. заявл. 17.06.1993, опубл. 10.02.1996.
10. Опыт промышленной эксплуатации гетерогенных катализаторов в процессах окисли-тельного обезвреживания сернисто-щелочных стоков и водных технологических конденсатов. А.Г. Ахмадуллина, Б.В.Кижаев, И.К.Хрущева, Н.М.Абрамова, Г.М.Нургалиева, А.Т.Бекбулатова, А.С.Шабаева. Нефтепереработка и нефтехимия, №2, 1993, с.19.
11. Пат. 2255805 Российская Федерация, МКП7 B01J23/70, B01J23/94, B01D53/86. Гетеро-генный катализатор окисления неорганических и/или органических соединений на по-лимерном носителе/ Кочеткова Р.П.; Кочетков А.Ю.; Коваленко Н.А.; патентооблада-тель Кочетков А.Ю. – № 2003105374/04. заявл. 25.02.2003, опубл. 10.07.2005.
12. Пат. 2110324 Российская Федерация, МКП7 B01J31/18, B01J23/75, B01J21/06. Ка-тализатор для окисления сернистых соединений / Ахмадуллина А.Г.; Шабаева А.С.; Нургалиева Г.М.; патентообладатель Ахмадуллина А.Г., – № 96114234/04. заявл. 16.07.1996, опубл. 10.05.1998.
13. Сероочистка нефтепродуктов и обезвреживание стоков на полимерном катализаторе КСМ. Р.М. Ахмадуллин, А.Г. Ахмадуллина, С.И. Агаджанян, А.Р. Зарипова. Нефтепе-реработка и нефтехимия, № 6, 2012.
14. Опыт гетерогенно-каталитической демеркаптанизации сырья МТБЭ в ОАО «Слав-нефть-ЯНОС». А.Г. Ахмадуллина, Р.М. Ахмадуллин, В.А. Смирнов, Л.Ф Титова, С.А.Егоров. Нефтепереработка и нефтехимия, №3, 2005г, стр.15-17.